
Non-Proprietary Bacterial Colony Enumeration
1st Kayle Ransby

Department of Computer Science
and Software Engineering
University of Canterbury

Christchurch, New Zealand
krr39@uclive.ac.nz

2nd Richard Green
Department of Computer Science

and Software Engineering
University of Canterbury

Christchurch, New Zealand
richard.green@canterbury.ac.nz

Abstract—This paper proposes methods to enumerate bacterial
colonies present on agar plates without the use of proprietary
hardware or software. This is a very common activity in
microbiology labs, however it is usually performed by hand
as current dedicated equipment for this task is slow, expensive
and not user-friendly. The proposed methods utilize the Hough
Circle and Watershed Transforms to detect circular features in
images of agar plates. A control group of 19 high quality images
with optimal contrast was compared with a test group of 19
low quality smartphone images with high image noise retrieved
from the University of Canterbury Microbiology Labs. These
images provided a sufficient data set to develop the methods.
The methods are able to achieve a control enumeration accuracy
of up to 98% and 80% for the Hough Circle and Watershed
Methods respectively, matching the accuracy of past research.
The test enumeration accuracy of 5.5% and 8% for the same two
methods compares unfavourably to prior research’s enumeration
accuracy but required less algorithm complexity and required no
proprietary hardware or software.

I. INTRODUCTION

One of the most common tasks performed in microbiology
labs is enumerating (counting) bacterial colonies grown on
agar plates. This is commonly achieved by using a pen to
mark where you’ve been and a clicker to keep count, shown
in Figure 1. This method is cheap and simple, however it is
also subject to human error, as depending on the plate dilution,
there could be upwards of 1000 colonies present. This also
puts strain on the microbiologist performing the counting, as
it is a time consuming and tedious task.

To reduce some of the strain on microbiologists, slightly
more advanced counting devices utilise a magnifying glass,
grid and light (typically below the plate) shown in Figure 2.
Following the grid, each colony is tapped with either a pen
or a probe connected to the apparatus. Each tap registers as a
colony being counted, which is kept track of by a screen on the
device. While this reduces eye strain for the microbiologists,
it only slightly reduces the human error and the amount of
time to count the plate. Additionally, a basic counter like this
could cost around $650.00 USD [2], making the cost heavily
outweigh the benefits.

The next step is fully or semi-automated colony counters.
These machines typically consist of an enclosed chamber, HD
camera, various lights and some form of partner software run-
ning either directly on the machine or on a separate computer.
They capture an image of the plate using their integrated

Fig. 1. Using a pen and clicker to manually counting bacterial colonies [1].

Fig. 2. View of a more advanced manual colony counting technique [3].

cameras, and perform different image filtering techniques,
such as sharpening and edge detection, to process the image
and count the number of colonies present. These machines
are always extremely expensive and run proprietary software,
which can’t be customized beyond what the software supports
[2]. An example of such a machine is shown in Figure 3.

Clearly, all of the methods outlined above have their draw-
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Fig. 3. Automated colony counter, with integrated interface. Captures image
of plate, analyzes and filters image, and returns the number of colonies as
well as an image of what the device determined to be colonies [4].

backs. Whether it’s taking time, paying excessive money or
fiddling with proprietary software, none of these solutions are
ideal. It is the third, automated method that this paper aims
to implement using a simple, accurate and non-proprietary
solution.

II. BACKGROUND

A. Review of Literature

Current solutions to automated and assisted bacterial colony
counting in the form of machines pictured in Figures 2
and 3 are exorbitantly expensive. A basic manual counter
costs approximately $650.00 USD and an advanced automated
counter can cost anywhere between $4,000.00 to $100,000.00
USD for the machine and software [2]. Because of this,
access to these machines is extremely limited and inconvenient
for the vast majority of microbiologists. Current open-source
solutions attempt to solve this problem by building their own
automated machines for around $100.00 USD. These typically
consist of an HD camera, back-light with diffuser and a jig
or enclosure to hold everything in the correct place [5]–[7].
While this is certainly more affordable than purchasing a
typical colony counting machine, it does not eliminate the
inconvenience of using a proprietary design.

Previous research shows that automated colony counters
encounter certain obstacles that can be reduced through pre-
processing. Visual noise such as shadows, reflections, bacte-
rial colony overlap, the surface the plate is sitting on and
imperfections in or on the agar plate itself can introduce
potentially problematic pixels that could interfere with the
counting and introduce false positives. Sharpening, greyscale,
noise-reducing and binarization filters can be applied to input
images to reduce the effects of this unwanted noise [8].

Even with these preprocessing techniques, some methods
require additional steps such as dying the bacteria [8], lack
appropriate noise filtering resulting in false positives [9] or
rely on third-party proprietary software to work [10]. Further

research identified that simply masking the area of interest
in the image (i.e. removing all pixels except the agar and
colonies) eliminates the chance of any false positives outside
the plate area [11].

Past research has produced solutions that align with the
proposed outcome of this paper [7], [12]–[14]. In some
cases, these solutions sacrifice simplicity and customizability
for accuracy and speed through the use of neural networks
[15]. Depending on the use-case, the ability to customize the
methods is important, giving the added requirement of simple
inputs and basic algorithms.

A candidate method for identifying bacterial colonies in an
image is the Hough Transform, which Paul Hough developed
in 1960 as a “method and means for recognizing complex
patterns ” [16]. Hough’s goal was to optimize the analysis
of bubble chamber pictures, since many photographs needed
analysis. When done by hand, each photograph took several
hours to analyze [16]. Essentially, Hough created a method
for solving the same problem for the study of atomic particles
as we would like to solve for the enumeration of bacterial
colonies.

A second candidate method is the automated Watershed
Transform, which works by viewing a greyscale image as
a topographic surface (like a map) [17]. This method is a
popular choice amongst previous researchers due it its ability
to automatically segment different features and label them
individually.

B. Aims and Objectives

The aim of this paper is to identify a simple method for
accurately enumerating bacterial colonies using pictures taken
by a smartphone. This eliminates the need for any proprietary
hardware, such as a dedicated colony counting machine or
HD camera, needing to be purchased or constructed, as almost
everyone already has a powerful computer with an integrated
HD camera with them at all times in the form of a smartphone.

The methods will be integrated using Python and use some
OpenCV library functions, however the methods outlined here
could be translated into the form of a mobile app for use
directly on smartphones. Implementations of the Hough Circle
Transform and the Watershed Transform will be compared
with hand counting for speed, accuracy and error rates.

Through assistance from microbiologists at the University
of Canterbury [1], the test group of images consists of two
different types of bacteria: Escherichia coli (Gram negative)
and Serratia marcescens (Gram negative). In addition to this,
four different types and colors of agar will be used: Luria-
Bertani (LB), Luria-Bertani + rifampicin (LB+R), Reasoner’s
2A agar (R2A), and Tryptone Soya Agar (TSA). All of which
will be prepared in 85mm agar plates.

III. METHOD

To prepare the agar plates, the following procedure was
used: A single colony was taken from a serially diluted stock
plate (LB+R) and used to inoculate a liquid culture of LB.
This was incubated overnight at 37◦C. The inoculum was then
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serially diluted in LB by a factor of 10000. 100 µl of diluted
inoculum was then plated onto the various agar types and
spread with a glass spreader. Plates were incubated overnight
at 37◦C [1]. The results are pictured in Figure 4

Fig. 4. The different colours and transparencies of agar to be used, from left
to right: (top) LB, LB+R, (bottom) R2A, and TSA [1].

This produced a good sized sample group of images for
initial testing, ensuring that the methods can cope with a range
of bacteria and agar types.

Image preprocessing techniques and the two main feature
detection methods were implemented as individual Python
functions. The two feature detection methods used were the
Hough Circle and Watershed transform. The code pipeline1

for these methods is shown in Figure 5.

Fig. 5. The analysis pipeline.

A. Image Preprocessing

To prepare an image for enumeration with the two different
methods, it needs to be preprocessed. As shown in Figure 5,
the following filters are applied to the input image:

1See [18] for the source code.

1. Laplacian sharpening (make edges more noticeable),
2. Greyscale conversion (black-and-white, 0 - 255),
3. Binarization (two-tone, 0 - 1),
4. Masking (remove noise).
The first three steps are automatic and require no input from

the user. The image could be enumerated after performing
steps 1 - 3, but as mentioned in [8], there may still be
problematic noise present. To prevent this, step four uses the
Hough Circle Transform to identify the agar plate in the image
with assistance from the user. Once an appropriate circle is
identified, a mask is created using the circle as a guide. This
eliminates the noise outside the plate area.

Given the vast number of contrasts for both the agar types
and bacterial colonies, it is naive to assume that this method is
fool-proof and will always produce a binary image containing
a black background with white colonies. This can be mitigated
by allowing the user to see the binary image before it is
processed and decide whether to invert it or add some extra
preprocessing steps if the colonies are not defined enough [12].
The extra preprocessing consists of two rounds of dilation with
erosion in the middle all of which are a single pass, producing
acceptable results during testing.

The implementations for both Method 1 and Method 2
rely on an image with white features on a black background,
allowing for the same preprocessing pipeline to be utilised
by both methods. Figure 6 shows the preprocessing pipeline
applied to an input image [19].

B. Method 1: Hough Circle Transform

Our version of the Hough Circle Transform implements
a detection method more complex than the standard Hough
Transform called The Hough gradient method, which consists
of two steps [20]. The first step performs edge detection by
analyzing high gradient pixels to find possible circle centers.
The preprocessing steps applied to the input images makes this
a simple task, as the image only has two colours. The second
step finds the best radius for each candidate center, requiring
the user to enter a range over a minimum and maximum radius.
These identified circles are recorded as vectors of the form
(x, y, r), where x is the X position of the circle center, y is
the Y position of the circle center and r is the best radius
found in the specified range. Using these vectors, the circles
can be drawn onto the image to provide visual feedback to the
user about their choice of radii. They are also the metric used
for counting the number of colonies present.

The Hough Circle Transform is a good option to use due
to its robustness in the face of image noise and its ability to
detect circles that are only partially visible, which is important
for the detecting colonies right on the edge of the plate or that
are overlapping.

C. Method 2: Watershed Transform

There are two key steps to the Watershed method, in
addition to the Watershed transform itself, as seen in Figure
5. The first of these steps is to generate a border for the
components in the preprocessed image. This is achieved by
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Fig. 6. Pre-processing pipeline, from left-to-right, top-to-bottom: original im-
age, sharpening, greyscale conversion, binarization, noise reduction, masking.

subtracting an eroded image from a dilated image, resulting in
a thin border surrounding all components in the preprocessed
image. Once the border is generated, a distance transform is
used to convert the binary preprocessed image into a topolog-
ical image, with peaks being white (255) and troughs being
black (0). This topological image is then binary thresholded
between the values (heights) 150 - 255, this ensures only
the peaks are visible in the final image. Once the binarized
distance transform image is ready, the watershed transform
can be applied. The Watershed Transform returns the number
of individual components it has detected as well as a mask
containing their positions. Once this mask has been retrieved,
it is coloured red and overlaid onto the original image, giving
visual feedback to the user about the number of colonies
identified.

D. Testing Conditions

All tests will be conducted using the following hardware
and software:

• OS: Xubuntu 20.04
• Processor: AMD Ryzen 7 1700; Eight-Cores, Sixteen-

Threads; 3.00 GHz.
• IDE: Visual Studio Code
• Language: Python 3.8

• Device: Desktop computer
• Camera: IPhone 10; 12MP
• OpenCV Version: 4.5.1

IV. RESULTS

A. Control Group

The control group is a set of 19 high quality images of
Staphilococcus aureus colonies on LB agar plates with a
bright background [21]. These images, which are under ideal
conditions, allow for a control group to compare the lower-
quality smartphone images to. Results for the control group
testing are pictured in Figure 7.

Fig. 7. Graph showing the total number of colonies enumerated by each
method with their respective error rates (left) and the time taken to enumerate
the colonies using each method (right)

In order to achieve comparable results, the number of
colonies enumerated by hand is assumed to be the ground
truth. With this in mind, the error rate graph shows the number
of colonies enumerated by each method as the purple and
orange lines, and their respective error rates are shown as the
light purple and light orange areas surrounding these lines.
These error rates are calculated as the number of colonies
enumerated by a particular method plus or minus the sum of
the false positive rate (FPR) and the false negative rate (FNR).
Written as an equation, this becomes:

error(x) = C(x)± (FPR(x) + FNR(x)) (1)

Where C(x) is the number of colonies enumerated by the
method at expected value x, and (FPR(x)+FNR(x)) is the
sum of the FPR and FNR at expected value x. The equation
returns two values for a given x value of the form (upper-
bound, lower-bound). This upper and lower-bound are what is
used to define the error rate of the respective methods.

For better accuracy, the light-coloured areas should be small
and the slope of the line should be as close to the ”True
colonies” (black dashed) line as possible. The control group’s
results show that both methods are viable for appropriate plate
densities. The peak appropriate plate density for the Watershed
Method is ≈ 300± 53. The peak appropriate plate density for
the Hough Circle Method of ≈ 1200± 60 is far greater as its
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deviation from the true count is minimal. If we simplify these
ranges to 0 - 1200 for the Hough Circle Method and 0 - 300
for the Watershed Method, the former is ≈ 75% more accurate
than the latter. Despite this, both methods are essentially 100%
accurate with plate densities at or below ≈ 200.

The mean time taken to enumerate the colonies using each
method was identified as (M:SS) ≈ 2:29, 1:04 and 0:16 for
the Hand counting, Hough Circle and Watershed Methods
respectively. The mean overall detection accuracy (calculated
as the number of enumerated colonies divided by the number
of expected colonies) was identified as 98% for the Hough
Circle Transform and 80% for the Watershed Transform.

The important comparators for the different methods are
shown in Table I, allowing conclusions to be drawn from the
data.

TABLE I
CONTROL TEST RESULTS

Test Comparators
Result Time Accuracy FPR FNR

Mean Hough 01:04.69 98% 7.26 5.53
Min Hough 00:28.76 82% 0 0
Max Hough 02:13.29 100% 60 22
Mean Water 00:16.11 80% 6.05 19.47
Min Water 00:08.55 62% 0 0
Max Water 00:26.69 100% 53 100

The same original image [19], shown in Figure 8, was
enumerated using Method 1 and 2. The results from each
method are shown below in their respective subsection.

Fig. 8. Original image with plate identified.

The identified plate (red) circle can be seen in Figure 8.
This circle is the once transformed into a mask during the
preprocessing stage. The fully preprocessed image is shown
in Figure 9

B. Method 1: Hough Circle Transform

After performing the Hough Circle Transform on the image
shown in Figure 9, the output image shown in Figure 10 is
generated. This image consists of the original input image

Fig. 9. Pre-processed image ready to be enumerated.

Fig. 10. Output image after performing the Hough Circle Transform.

with the plate mask and identified colonies highlighted by
red circles overlaid on top. A border containing relevant
information about the test is also generated, containing the
filename, method used, number of colonies identified and the
time taken to achieve the result. In this example, the number of
colonies identified is 83, and the number of expected colonies
is 83, giving an accuracy of 100.00%. As mentioned earlier,
the Hough Circle Transform is robust in the face of image
noise and partially obscured circles, meaning it is fully capable
of detecting colonies that overlap if the original image is of
sufficient quality.

The test group is a set of 19 low quality images of the
plates described in section III. These images are not ideal but
provide a valuable contrast to the control group and represent
the image quality expected from smartphone cameras in a lab.
Results for the test group after performing the Hough Circle
Method are pictured in Figure 11.

From Figure 11 alone, it is clear to see that the test group
did not perform as well as the control group. The average
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Fig. 11. Graph showing the test results for the Hough Circle Method

accuracy for the test group is 0.36% compared to the control
groups 98%. The important comparators for the Hough Circle
Method are shown in Table II.

TABLE II
HOUGH CIRCLE METHOD TEST RESULTS

Hough Circle Comparators
Method Time Accuracy FPR FNR

Mean 01:05.91 0.36% 38.16 416.89
Min 00:31.06 0.08% 0 0
Max 01:38.50 5.50% 153 2178

C. Method 2: Watershed Transform

Fig. 12. Output image after performing the Watershed Transform.

After performing the Watershed Transform on the image
shown in Figure 9, the output image shown in Figure 12
is generated. This image has the same composition as the
one generated by Method 1. In this example, the number of
colonies identified is 78, and the number of expected colonies
is 83, giving an accuracy of 93.98%. Examining the output,
it is clear that the watershed method is not as robust as the

Hough Circle method when it comes to detecting overlapping
colonies. Although, the overlapping colonies are still detected,
just not separated. In general, the watershed method requires
higher quality images and more distinguished colonies for the
required separation and best accuracy.

Results for the same test group described in section IV-B
after performing the Watershed Method are pictured in Figure
13.

Fig. 13. Graph showing the test results for the Watershed Method

Given that the Watershed Method requires higher quality
images for acceptable accuracy, it is no surprise that the low
quality test group images resulted in an average accuracy of
0.07%, compared to 80% for the control group images. The
important comparators for the Watershed Method are shown
in Table III.

TABLE III
WATERSHED METHOD TEST RESULTS

Watershed Comparators
Method Time Accuracy FPR FNR

Mean 00:29.73 0.07% 42.68 601.16
Min 00:16.20 0.00% 0 2
Max 01:04.41 8.00% 310 2500

V. CONCLUSION

This paper proposed methods to enumerate bacterial
colonies present on agar plates without the use of proprietary
software or hardware. These methods performed well with
high quality images, but lacked the ability to enumerate lower
quality images as expected, particularly for the Watershed
Method.

The performance of past research on high quality images
that align with the control group were able to achieve accu-
racy’s of approximately 98% [10], [11], matching the accuracy
of the Hough Circle Method presented in this paper. As
stated earlier, the Watershed Method is only able to achieve
an accuracy of approximately 80%, however this is due to
insufficient segmentation within the images, not lack of colony
detection. Past research’s performance when using low quality
images that align with the test group were able to achieve
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accuracy’s of approximately 92% [7], [12]. Unfortunately,
the methods presented here were only able to achieve a
maximum accuracy of 5.5% and 8.0% for the Hough Circle
and Watershed Methods respectively.

A. Limitations

The test data set consisting of 19 pictures of agar plates
taken by a smartphone, was relatively limited in terms of
variation, only really providing minor contrast differences in
the pigment of the agar and bacteria. They were also low
resolution and subject to noise from blur and glare.

In order to have consistent test metrics for the data collected
during analysis, the number of colonies counted by hand was
used as the ground truth. This is okay when comparing the
methods to each other, but introduces incorrect scaling when
comparing the data to past research. In reality, there is always
some level of human error involved with hand counting.

B. Future Research

Future improvements to the methods outlined here could
include automation of plate identification, as currently this
is the majority of the time spent when using the Watershed
method. This improvement could make the watershed method
essentially instant.

Testing on a larger data-set containing different pigmenta-
tion and opacity levels for both the agar and bacteria would
allow for further optimization of the preprocessing techniques
and perhaps creation of “presets” for different contrast levels.

Additionally, removal and optimization of the OpenCV
debug windows through the use of graphics libraries such as
Tkinter or implementation into a mobile application for use
and testing on a smartphones would make the algorithms more
user-friendly.

The Watershed Method is very accurate for quickly and
automatically identifying where the colonies are on the plates,
but not so accurate for enumerating them. Given this knowl-
edge, the Watershed method could be used as a “seed” for
the Hough Circle Method, perhaps by extrapolating a radii
range from the maximum and minimum area of the contours
identified by the Watershed Method.
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